

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Alternate π -Bond Routes for Carbon-13-Carbon-13 Spin-Spin Coupling - Hyperconjugative σ - π vs Non-Classical p-p Interactions

James L. Marshall^a; Larry G. Faehl^a; N. Dale Ledford^b

^a Department of Chemistry, North Texas State University, Denton, Texas ^b Department of Chemistry, University of South Alabama Mobile, Alabama

To cite this Article Marshall, James L. , Faehl, Larry G. and Ledford, N. Dale(1976) 'Alternate π -Bond Routes for Carbon-13-Carbon-13 Spin-Spin Coupling - Hyperconjugative σ - π vs Non-Classical p-p Interactions', *Spectroscopy Letters*, 9: 12, 877 — 880

To link to this Article: DOI: 10.1080/00387017608067479

URL: <http://dx.doi.org/10.1080/00387017608067479>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ALTERNATE π -BOND ROUTES FOR CARBON-13-CARBON-13 SPIN-SPIN COUPLING --
HYPERCONJUGATIVE σ - π VS NON-CLASSICAL p-p INTERACTIONS

Key words: Acetyl[2.2]paracyclophe, Phenylacetic acid, Carbon-13-labeled compounds, Carbon-13 nuclear magnetic resonance

James L. Marshall* and Larry G. Faehl N. Dale Ledford

Department of Chemistry
North Texas State University
Denton, Texas 76203

Department of Chemistry
University of South Alabama
Mobile, Alabama 36608

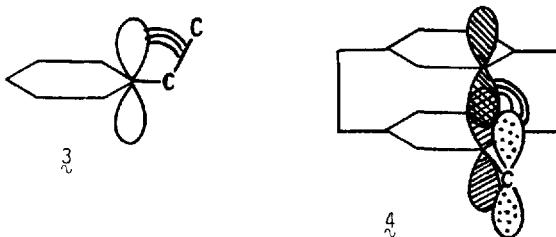
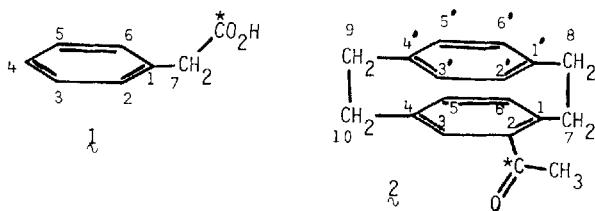
In a previous report¹ longer-range carbon-13-carbon-13 spin-spin coupling up to five bonds was noted in ¹³C-carboxyl-9,10-dihydro-9-anthroic acid. Although many types of longer-range proton-proton couplings in various π -systems are known² (e.g., cumulenes) which may portend analogous π -systems in carbon-carbon couplings, this type of carbon-carbon coupling observed in 9,10-dihydro-9-anthroic acid has no analogy in proton-proton coupling, since proton cannot be incorporated within a ring.

In the present study two new systems were explored which potentially were capable of carbon-carbon coupling *via* π -interactions and which had no proton-proton analogy. Accordingly, ¹³C-carboxyl-labeled λ and λ were synthesized. In λ (¹³C-carboxyl-phenylacetic acid) a σ - π "hyperconjugative" route is present (see β), and in λ (¹³C-carboxyl-2-acetyl[2.2]paracyclophe) a π - π "non-classical"³ coupling is potentially available (see δ).

Compound λ was synthesized by reacting benzyl Grignard reagent with >90% ¹³C-carbon dioxide utilizing the technique previously described,⁴ and compound λ was synthesized with >90% ¹³C incorporation by reacting ¹³C-carboxyl-acetyl chloride⁵ with [2.2]paracyclophe.⁶ The carbon-carbon couplings involving the labeled carboxyl carbon were then determined in λ and λ by directly measuring the splitting in each of the natural carbon signals. Table 1 gives the chemical shifts and coupling constants derived in this study for λ and λ .

TABLE 1

Carbon-13 Chemical Shifts, and Carbon-Carbon Coupling Constants
Involving the Labeled Carbon, for Compounds λ and β



Carbon No.	Chemical Shifts, δ^a (Coupling Constants, J^b) for Compound:	λ^c	β^c
1	135.0 (2.0)		140.8 (1.7)
2	129.9 (1.9)		137.3 (53.7)
3	128.9 (0.5)		135.6 (3.9 ^e) ^f
4	127.3 (0.7)		139.1 (4.4)
5	128.9 (0.5)		135.7 (<1.0 ^e)
6	129.9 (1.9)		133.6 (3.9)
1'			138.5 (0. ^g)
2'			130.6 (0. ^g) ^h
3'			131.5 (0. ^g)
4'			139.6 (0. ^g)
5',6' ^d			132.3 (0. ^g)
7,8,9,10 ^d	41.1 (55.9)		34.9-35.8 ⁱ
CH ₃			28.4 (41.8) ^j

^aIn ppm, referenced to internal standard TMS; considered to be accurate within 0.1 ppm. Carbon-13 spectra recorded on a JEOL PS-100 nmr spectrometer with resolution better than 0.1 Hz. ^bIn Hz, accurate to 0.1 Hz, except where noted. ^cChemical shift assignments for λ were trivial, and for β were done on the basis of additivity parameters, coupling patterns, and steric perturbation effects. ^dAssignments not differentiated.

^eInterference of these two signals rendered the accuracy of the J s to 0.5 Hz. ^fProton nmr spectrum gave $^3J(C^*-H_3) = 4.8$ Hz. ^gLess than 0.5 Hz.

^hNo evidence of coupling from the labeled carbon to the H(2') proton was seen in the proton nmr spectrum. ⁱOverlapping signals. ^jProton nmr spectrum gave $^2J(C^*-H) = 5.8$ Hz.

The data of Table 1 show that longer-range coupling (i.e., longer than three bonds) is significant in λ and that σ - π interactions are indeed apparently operating here. These couplings are akin to the "allylic" type

σ - π interactions in proton-proton couplings⁷ but operate at longer range. The existence of these couplings in λ is in agreement with such a "hyperconjugative" effect suggested by theoretical calculations (SCF-INDO-FPT) conducted for compound λ itself.¹

Regarding compound λ , the extensive electronic interactions between the two decks of [2.2]paracyclophane have been thoroughly documented (ultraviolet spectra,⁸ orientation effects in electrophilic substitution⁹ and in Birch reductions¹⁰), and one might have expected rather efficient transmittal of the spin information from one deck to the other in spin-spin coupling. That in fact no coupling is observed between the two decks indicates that either (1) the excited state phenomena in [2.2]paracyclophane do not carry over to the ground-state phenomenon of spin-spin coupling; and/or (2) in planar π -systems the carbon-carbon coupling is transmitted predominately through the σ -electrons. If this latter explanation is correct, then the observation that three-bonded couplings in aromatic compounds depend upon the π -bond order of the coupling path¹¹ may merely reflect the shorter bonds associated with higher π -bond order.

ACKNOWLEDGMENTS

Acknowledgment is given to the Robert A. Welch Foundation, Grant B-325, and to North Texas State University Faculty Research for financial support of this work. The authors also wish to express their appreciation to Dr. Richard M. Cox and to Courtney Pape of the University of Georgia for obtaining the carbon-13 nmr spectra for compound χ .

REFERENCES

1. J. L. Marshall, L. G. Faehl, A. M. Ihrig, and M. Barfield, J. Amer. Chem. Soc., 98, 3406 (1976).
2. S. Sternhell, Rev. Pure and Appl. Chem., 14, 15 (1964); M. Barfield and B. Chakrabarti, Chem. Rev., 69, 757 (1969).
3. P. D. Bartlett, "Nonclassical Ions," W. A. Benjamin, Inc., New York, N.Y., 1965.
4. J. L. Marshall and D. E. Miiller, J. Amer. Chem. Soc., 95, 8305 (1973).
5. Arthur Murray, III, and D. Lloyd Williams, "Organic Synthesis with Isotopes," Vol. 1, Interscience Publishers, New York, N.Y., 1958, pp 34, 375.
6. D. J. Cram and F. L. Harris, Jr., J. Amer. Chem. Soc., 89, 4642 (1967).
7. S. Sternhell, Quart. Rev., (London), 23, 236 (1969).
8. H. Allgeier, M. G. Sigel, R. C. Helgeson, E. Schmidt, and D. J. Cram, J. Amer. Chem. Soc., 97, 3782 (1975).
9. H. J. Reich and D. J. Cram, J. Amer. Chem. Soc., 91, 3505, 3527 (1969).
10. J. L. Marshall and B.-H. Song, J. Org. Chem., 39, 1342 (1974); J. L. Marshall and B.-H. Song, J. Org. Chem., 40, 1942 (1975).
11. J. L. Marshall, A. M. Ihrig, and D. E. Miiller, J. Mag. Resonance, 16, 439 (1974); S. Berger and K.-P. Zeller, Chem. Comm., 423 (1975).

Received: 10-19-76

Accepted: 11-5-76